

Attractor Based Evolution

Objectives and Outline

Introduction Origin Of Life Issues Metabolic And Genetic Views Conceptual Background Hypothesis

Chemistry: A Network View

Network Elements Mathematical Networks Static And Dynamic Chemical Networks Catalysis Network Memory And Exploration Four State Polymer Chemistry

Attractor Based Evolution

SimSoup

Conclusion

The Origin Of Life: A Network Oriented View Attractor Based Evolution

Chris Gordon-Smith SimSoup Project www.simsoup.info

Presentation To Life And Mind Group Sussex University

18 June 2010 Copyright Chris Gordon-Smith 2010

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Presentation Objectives And Outline

Attractor Based Evolution

Objectives and Outline

- Introduction
- Origin Of Life Issues Metabolic And Genetic Views
- Conceptual Background Hypothesis

Chemistry: A Network View

- Network Elements
- Mathematical Networks
- Static And Dynamic Chemical Networks
- Catalysis
- Network Memory And Exploration
- Four State Polymer Chemistry
- Attractor Based Evolution
- SimSoup
- Conclusion

- Introduce the metabolic hypothesis for the origin of life
- Set out a Network Oriented view of chemistry
- Spell out explicitely a mechanism for inheritance in attractor based (non template) evolution
- Focus on the *logical structure* of the problem^a
- SimSoup update
- OOL is a multidisciplinary subject; present accordingly
- Discussion

Objectives

Outline

See left

^aDon't be prescriptive about whether early life was based on RNA, protein, lipids, or something else.

Introduction

Attractor Based Evolution

Objectives and Outline

Introduction

Origin Of Life Issues Metabolic And Genetic Views Conceptual Background Hypothesis

Chemistry: A Network View

- Network Elements
- Mathematical Networks
- Static And Dynamic Chemical Networks
- Catalysis
- Network Memory And Exploration Four State Polymer
- Chemistry
- Attractor Based Evolution
- SimSoup
- Conclusion

Section Outline

- Key Issues for the Origin Of Life
- The Metabolic and Genetic Views
- The Conceptual Background For SimSoup
- Metabolic Hypothesis

Introduction Origin Of Life Issues

Attractor Based Evolution

Objectives and Outline

Introduction

- Origin Of Life Issues Metabolic And Genetic Views
- Conceptual Background Hypothesis

Chemistry: A Network View

- Network Elements
- Mathematical Networks
- Static And Dynamic Chemical Networks
- Catalysis
- Network Memory And Exploration
- Four State Polymer Chemistry
- Attractor Based Evolution
- SimSoup
- Conclusion

Key Questions

- **Trophic Method:** What were the first evolving systems built from (what did they eat)?
- Homochirality: How did this arise?
- **Individuation:** How were individual organisms separated from one another?
- Origin of Evolution: How did entities capable of transferring inherited information arise?

Attractor Based Evolution

Objectives and Outline

Introduction Origin Of Life Issues

Metabolic And Genetic Views

Conceptual Background Hypothesis

Chemistry: A Network View

Network Elements

Mathematical Networks

Static And Dynamic Chemical Networks

Catalysis

Network Memory And Exploration

Four State Polymer Chemistry

Attractor Based Evolution

SimSoup

Conclusion

Introduction Metabolic And Genetic Views: Genetic

The RNA World

- Accurate template replicators are needed: The extreme improbability of such molecules arising by random processes is a major difficulty for the RNA World. (Eigen's chicken and egg paradox)
- A ready supply of homochiral monomers is needed: The macro-molecules of life cannot be constructed in the presence of monomers of mixed chirality

Cairns Smith's Clay Crystals

- Deals with homochirality...
- But must show inheritance in clay based organisms...
- And that genetic takeover can take place

Attractor Based Evolution

Objectives and Outline

Introduction Origin Of Life Issues

Metabolic And Genetic Views

Conceptual Background Hypothesis

Chemistry: A Network View

Network Elements

Mathematical Networks

Static And Dynamic Chemical Networks

Catalysis

Network Memory And Exploration

Four State Polymer Chemistry

Attractor Based Evolution

SimSoup

Conclusion

Introduction Metabolic And Genetic Views: Metabolic

Metabolic View: Advantages And Key Challenges

- Life can start simple...
- No need for accurate template replicators
- No need for a ready supply of homochiral monomers
- In autotrophic variants, only an energy supply and low molecular weight molecules are neededf

Key Challenges

- Identify and explain an inheritance mechanism
- Explain individuation and reproduction
- Explain how genetic takeover ocurred

Attractor Based Evolution

Objectives and Outline

- Introduction
- Origin Of Life Issues Metabolic And Genetic Views
- Conceptual Background
- Hypothesis

Chemistry: A Network View

- Network Elements
- Mathematical Networks
- Static And Dynamic Chemical Networks
- Catalysis
- Network Memory And Exploration
- Four State Polymer Chemistry
- Attractor Based Evolution
- SimSoup
- Conclusion

Introduction Conceptional Background

Relevant Work And Concepts

- The Metabolic View theories of Aleksandr Oparin, Stuart Kauffman, Freeman Dyson
- The Lipid World and the GARD model of Doron Lancet's group (recently criticised by Vasa, Szathmáry and Santos)
- Network theory, particularly the work of Sanjay Jain and Sandeep Krishna
- Günter Wächtershäuser's chemo-autotrophic Iron-Sulphur World
- Linus Pauling: The Nature Of The Chemical Bond
- Tibor Gánti: Principles of Life, Fluid Machines, Chemoton
- Formose reaction based lipid encapsulated protocell of Ben Davis' group
- Chrisantha Fernando: Origin of informational replicators^a
- Organisation Theory: Peter Dittrich and Pietro Speroni di Fenizio
- Individuation: Bénard Cells, Spots (Nathaniel Virgo)

^aAlso recent paper by Fernando and Vasa on co-optive evolution in chemical networks

Introduction Hypothesis

Attractor Based Evolution

Objectives and Outline

Introduction

- Origin Of Life Issues Metabolic And Genetic Views
- Conceptual Background
- Hypothesis

Chemistry: A Network View

- Network Elements
- Mathematical Networks
- Static And Dynamic Chemical Networks
- Catalysis
- Network Memory And Exploration
- Four State Polymer Chemistry
- Attractor Based Evolution
- SimSoup
- Conclusion

Evolution Of Metabolic Networks

- Evolution is essentially a process of trial and error
- Successful trials must be inherited. That is, remembered and transmitted to offspring
- **Hypothesis:** Early organisms contained chemical networks that were capable of carrying and passing on inherited information
- Intuitive Argument: There are many examples in which networks are known to carry information. The most striking is the brain

Chemistry: A Network View

Attractor Based Evolution

Objectives and Outline

Introduction

- Origin Of Life Issues Metabolic And Genetic Views
- Conceptual Background Hypothesis

Chemistry: A Network View

- Network Elements Mathematical Networks Static And Dynamic Chemical Networks Catalysis
- Network Memory And
- Exploration
- Four State Polymer Chemistry
- Attractor Based Evolution
- SimSoup
- Conclusion

Section Outline

- Elements Of A Chemical Network
- Mathematical Networks
- Static And Dynamic Chemical Networks
- Catalysis
- Network Memory And exploration
- A Four State Artificial Chemitry That Builds Polymers

Chemistry: A Network View

Attractor Based Evolution

Objectives and Outline

- Introduction
- Origin Of Life Issues Metabolic And Genetic Views
- Conceptual Background Hypothesis

Chemistry: A Network View

Network Elements

- Mathematical Networks Static And Dynamic
- Chemical Networks
- Catalysis
- Network Memory And Exploration
- Four State Polymer Chemistry
- Attractor Based Evolution
- SimSoup
- Conclusion

What Are The Basic Units Of A Chemical Network?

- Chemistry is about particles and reactions
- The particles can be molecules or ions and are of many different types
 - SimSoup term: Molecule Type
- The reactions are of many different types
 - SimSoup term: Interaction Type
- To understand chemistry as a network, we must be able to represent:
 - Molecule Types
 - Interaction Types

Attractor Based Evolution Chemistry: A Network View Network Elements: Molecule Types

What Is A Molecule Type? (SimSoup Terminology)

- Molecule Type:
 - A possible assembly of Atom Types
 - A Molecule Type has structure (more later...)

• Atom Type:

- An indivisible Molecule Type
- Can correspond to an element in real chemistry, but does not have to^a

 $^{a}\mathrm{An}$ Atom Type could be used to model a chemical group provided that it does not split under the conditions of interest

Representing Molecule Types In A SimSoup Network

- Molecule Types are represented as Nodes
- Each Node represents a different Molecule Type

Objectives and Outline

- Introduction
- Origin Of Life Issues Metabolic And Genetic
- Views
- Conceptual Background
- Hypothesis

Chemistry: A Network View

- Network Elements
- Mathematical Networks Static And Dynamic
- Chemical Networks Catalysis
- Network Memory And
- Exploration
- Four State Polymer Chemistry
- Attractor Based Evolution
- SimSoup
- Conclusion

Chemistry: A Network View

Network Elements: Interaction Types

Attractor Based Evolution

Objectives and Outline

Introduction Origin Of Life Issues Metabolic And Genetic Views Conceptual Background Hypothesis

Chemistry: A Network View

Network Elements

- Mathematical Networks Static And Dynamic Chemical Networks
- Catalysis
- Network Memory And Exploration
- Four State Polymer Chemistry
- Attractor Based Evolution
- SimSoup
- Conclusion

Three Forms Of Interaction

• Only three things can happen in chemistry:

- Construction: Two Molecules join
- Transformation: A Molecule re-arranges
- Fission: A Molecule splits
- All more complex Interactions are combinations of these three elementary interactions

Chemistry: A Network View

Network Elements: Compound Interactions

Attractor Based Evolution

Objectives and Outline

- Introduction
- Origin Of Life Issues Metabolic And Genetic
- Views
- Conceptual Background Hypothesis

Chemistry: A Network View

Network Elements

- Mathematical Networks Static And Dynamic Chemical Networks Catalysis
- Network Memory And Exploration
- Four State Polymer Chemistry
- Attractor Based Evolution
- SimSoup
- Conclusion

Compound Interactions

The above is a Compound Interaction with overall scheme $A+B \rightarrow E+F$

A Compound Interaction Does Not Have A Rate Constant

- Rate depends on the concentrations of C and D
- In a larger network, C and D may be reactants or products for other Interaction Types...
 - ... A Compound Interaction cannot be modelled as a type of reaction with a rate constant

Attractor Based

Evolution

Chemistry: A Network View

Mathematical Networks

Bipartite Graphs and Hypergraphs

- Graph: A set consisting of Nodes, and Edges connecting pairs of Nodes
- A chemical network is *not* a Graph with Molecule Types as Nodes and Interaction Types as Edges
 - Construction C1 above has three connected Nodes...
 - ... it cannot be represented as two separate Edges
- A chemical network is a directed hypergraph^a
- Or equivalently a *bipartite directed graph* in which both Molecule Types and Interaction Types are Nodes^b

^aA hypergraph is a generalisation of a graph, where a 'hyperedge' can connect any number of vertices. In a directed hypergraph, hyperedges connect 'head' nodes to 'tail' nodes.

^bA bipartite graph has vertices that can be divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V. In a bipartite directed graph, each edge has a direction.

Objectives and Outline

- Introduction
- Origin Of Life Issues Metabolic And Genetic
- Metabolic And Geneti Views
- Conceptual Background
- Hypothesis

Chemistry: A Network View

Network Elements

Mathematical Networks

- Static And Dynamic Chemical Networks
- Catalysis
- Network Memory And Exploration
- Four State Polymer Chemistry
- Attractor Based Evolution
- SimSoup
- Conclusion

Attractor Based

Evolution

Objectives and Outline

- Introduction
- Origin Of Life Issues Metabolic And Genetic
- Views
- Conceptual Background
- Hypothesis

Chemistry: A Network View

- Network Elements
- Mathematical Networks

Static And Dynamic Chemical Networks

- Catalysis
- Network Memory And Exploration
- Four State Polymer Chemistry
- Attractor Based Evolution
- SimSoup
- Conclusion

Chemistry: A Network View

Static And Dynamic Chemical Networks

The Static Network

- Is defined by:
 - Molecule Types
 - Interaction Types
 - Rate constants (temperature & pressure dependent)
- Is determined for all time by the laws of physics
- Is infinite in real chemistry (because no upper limit to Molecule size)

A Dynamic Network

- Consists of:
 - Actual Molecules
 - Actual Interactions taking place between them
 - Actual Interaction rates
- Is a possible configuration on the Static Network

Chemistry: A Network View

Attractor Based Evolution

Objectives and Outline

- Introduction
- Origin Of Life Issues Metabolic And Genetic Views
- Conceptual Background Hypothesis

Chemistry: A Network View

Network Elements Mathematical Networks Static And Dynamic Chemical Networks

Catalysis

- Network Memory And Exploration Four State Polymer Chemistry
- Attractor Based Evolution
- SimSoup
- Conclusion

Catalysis: Process Oriented View

- 'Catalyst' is not a kind of Molecule
- It is a *role* that a Molecule can play in a chemical process

 $A + X \rightarrow I$

 $I \rightarrow X + B$

• In this example, X plays the role of catalyst

Chemistry: A Network View Network Memory And Exploration: Two State Memory Unit

Attractor Based Evolution

Objectives and Outline

- Introduction
- Origin Of Life Issues Metabolic And Genetic
- Views
- Conceptual Background Hypothesis

Chemistry: A Network View

- Network Elements Mathematical Networks Static And Dynamic
- Chemical Networks Catalysis
- Network Memory And Exploration
- Four State Polymer Chemistry
- Attractor Based Evolution
- SimSoup
- Conclusion

A Chemical Network That Can Remember

$A + X \to I1$	(C1)
$\text{I1} \rightarrow \text{X} + \text{I2}$	(F1)
$\text{I2} \rightarrow \text{X} + \text{B}$	(F2)

- Overall Scheme: A \xrightarrow{X} B + X
- Assume A is 'food' with fixed concentration
- The process is autocatalytic
- There are two stable states ^a:
 - 'Inactive': X is not present
 - 'Active': X is present and maintained
- The active state is an *attractor* concentrations are restored if perturbed
- Addition of a single Molecule of X to an inactive network is remembered

^aAssume a small leakage of Molecules from the reactor

Attractor Based Evolution

Chemistry: A Network View Network Memory And Exploration: Network Exploration

A Network With Memory Can Be Explored

- The network has three stable states
 - State 1: Inactive
 - State 2: Unit 1 only active
 - State 3: Units 1 and 2 active
- State 3 can only be reached via State 2
 - First perturb by adding one Molecule of X
 - Then add one Molecule of Y
- In a large network, successive perturbations will lead to a process of exploration and discovery

Introduction Origin Of Life Issues

Objectives and

Outline

- Metabolic And Genetic Views Conceptual Background
- Hypothesis

Chemistry: A Network View

- Network Elements Mathematical Networks Static And Dynamic Chemical Networks
- Catalysis

Network Memory And Exploration

- Four State Polymer Chemistry
- Attractor Based Evolution
- SimSoup
- Conclusion

Chemistry: A Network View Network Memory And Exploration: A Memory Bank

Attractor Based Evolution

Objectives and Outline

Introduction Origin Of Life Issues Metabolic And Genetic Views Conceptual Background Hypothesis

Chemistry: A Network View

- Network Elements Mathematical Networks Static And Dynamic Chemical Networks Catalysis
- Network Memory And Exploration
- Four State Polymer Chemistry
- Attractor Based Evolution
- SimSoup
- Conclusion

An Artificial Chemistry With Many Attractors

- Autocatalytic two-state sub-networks (memory units) with catalysts X_{ii}
- A is food for the first column units
- Each unit produces food for the next
- Each row has 10 attractors (from all units inactive to all units active)
- The rows can be explored independently
- The network as a whole has 10⁹ distinct attractors

Attractor Based Evolution

Objectives and Outline

Introduction Origin Of Life Issues Metabolic And Genetic Views Conceptual Background

Hypothesis

Chemistry: A Network View

Network Elements Mathematical Networks

Static And Dynamic Chemical Networks

Catalysis

Network Memory And Exploration

Four State Polymer Chemistry

Attractor Based Evolution

SimSoup

Conclusion

Chemistry: A Network View

A Polymer (Artificial) Chemistry With Four Stable States

Food Set

٠ A - a 'monomer'. BB, CC and DD are 'stable' dimers that can be cleaved under specific conditions

Reactions That Make A New Dimer

٩	$A+B \to AB$	

- $AB + BB \rightarrow BB BB$ 0
- AB $\rightarrow B^{AB} + B$
- AB $\rightarrow AB + B$
- Overall Scheme: A + BB \xrightarrow{B}

Continuing the Polymer

 $AB + CC \xrightarrow{C} ABC + C$ • ABC + DD \xrightarrow{D} ABCD + D

// A can not join with A, C or D. Eg due to incompatible shapes:

- // The dimer is cleaved to return the catalyst
- // Excess catalyst ensures stability
- AB + B

// AB can not join with A, B or D

// ABC can not join with A, B or C

The Chemistry Has Four Alternative Stable States

- ۰ Four alternative stable states: Food + ({Ø} or {AB} or {AB, ABC} or {AB, ABC, ABCD})
- Requirement: BB, CC and DD are stable, but can be cleaved by (only) AB, ABC, ABCD respectively

Attractor Based

Attractor Based Evolution

Evolution

Objectives and Outline

Introduction

Origin Of Life Issues Metabolic And Genetic Views Conceptual Background Hypothesis

Chemistry: A Network View

- Network Elements
- Mathematical Networks
- Static And Dynamic Chemical Networks
- Catalysis
- Network Memory And Exploration
- Four State Polymer Chemistry

Attractor Based Evolution

SimSoup

Conclusion

Section Outline

- What Is Envisaged?
- Open Questions How Many Attractors?
- More Open Questions

Attractor Based Evolution

Attractor Based Evolution

Objectives and Outline

- Introduction
- Origin Of Life Issues Metabolic And Genetic
- Views
- Conceptual Background Hypothesis

Chemistry: A Network View

- Network Elements
- Mathematical Networks
- Static And Dynamic Chemical Networks
- Catalysis
- Network Memory And Exploration
- Four State Polymer Chemistry

Attractor Based Evolution

- SimSoup
- Conclusion

Scenario For Attractor Based Evolution

- Metabolism first theories usually assume that
 - Early organisms had a means for individuation
 - They could divide and produce offspring
- Recall: The static network in real chemistry is infinite
- If memory and exploration as illustrated is supported...
- ... and the molecular composition of each offspring is roughly similar to that of the parent, then ...
- ... new sub-networks discovered by the parent will be retained by the offspring *because they are attractors*
- ... and evolution will occur
- Lamarckian (non-Darwinian) evolution, because aqcuired characteristics are inherited

Network Evolution

۲

Attractor Based Evolution

Objectives and Outline

- Introduction
- Origin Of Life Issues Metabolic And Genetic Views
- Conceptual Background Hypothesis

Chemistry: A Network View

- Network Elements
- Mathematical Networks
- Static And Dynamic
- Chemical Networks
- Catalysis
- Network Memory And Exploration Four State Polymer
- Chemistry

Attractor Based Evolution

- SimSoup
- Conclusion

What Kind Of Network Supports Many Attractors?

- The memory bank example can be extended to support an unlimited number of attractors...
- ...But the example was specifically designed
- Can real chemical networks support many attractors?^a
- What network properties result in many attractors?
 - Many Molecule Types? Few Molecule Types?
 - High connectivity? Low connectivity? Small World?
 - Do simplifying constraints of some kind help?^b

^bFor example, as in the memory bank with independent 'rows'

^aVasas, Szathmáry and Santos - PNAS paper, say "Information in attractor-based systems crucially depends on the limited number of alternative stable states...", but that is based on analysis of a GARD system with a fixed number of Molecule Types, a finite network with random connectivity, and simplifying assumptions enabling the network to be represented as a graph

Attractor Based Evolution

Objectives and Outline

Introduction

Views Conceptual Background

Origin Of Life Issues Metabolic And Genetic Network Evolution

More Open Questions For Network Evolution

- How many attractors are needed to provide a scaffold for genetic takeover?
- How frequent are transitions between attractors?
- What causes them?
- What mechanisms could support individuality and reproduction in non template replicating organisms?
- How could the transition to template replicators (Genetic Takeover) be made?
- What is the relationship between molecular structure and chemical network structure?

Hypothesis Chemistry: A Network View

- Network Elements
- Mathematical Networks
- Static And Dynamic Chemical Networks
- Catalysis
- Network Memory And Exploration
- Four State Polymer Chemistry

Attractor Based Evolution

- SimSoup
- Conclusion

Attractor Based

SimSoup

Evolution

Objectives and Outline

Introduction

Origin Of Life Issues Metabolic And Genetic Views Conceptual Background Hypothesis

Chemistry: A Network View

- Network Elements
- Mathematical Networks
- Static And Dynamic Chemical Networks
- Catalysis
- Network Memory And Exploration
- Four State Polymer Chemistry
- Attractor Based Evolution

SimSoup

Conclusion

Section Outline

- Basic Network Simulator
- SimSoup Extended As A Network Explorer
- Preliminary Results

SimSoup Basic Model

Attractor Based Evolution

Objectives and Outline

Introduction

- Origin Of Life Issues Metabolic And Genetic Views
- Conceptual Background Hypothesis

Chemistry: A Network View

- Network Elements
- Mathematical Networks
- Static And Dynamic Chemical Networks
- Catalysis
- Network Memory And Exploration
- Four State Polymer Chemistry
- Attractor Based Evolution

SimSoup

Conclusion

SimSoup As A Network Simulator

- Static Network
 - Setup Molecule Types and Interaction Types (Constructions, Transformations and Fissions)
 - Each Interaction Type must conserve Mass
 - Rate constants are themodynamically realistic
- Network Dynamics
 - Interactions occur in a well stirred Reactor
 - Interaction Rates
 - Bimolecular Interaction Types k[R1][R2]
 - Unimolecular Interaction Types k[R1]

SimSoup Extended Model

Attractor Based Evolution

Objectives and Outline

- Introduction
- Origin Of Life Issues Metabolic And Genetic Views
- Conceptual Background Hypothesis

Chemistry: A Network View

- Network Elements
- Mathematical Networks
- Static And Dynamic Chemical Networks
- Chemical Net Catalysis
- Network Memory And Exploration
- Four State Polymer Chemistry

Attractor Based Evolution

SimSoup

Conclusion

SimSoup Extended As A Network Explorer

- Molecule Types and Interaction Types not pre-defined
- Adding molecular structure allows a more open-ended approach
 - Each Molecule Type has a two dimensional structure, built from Atoms
 - Molecules can Join or Split to form Molecules of different types
 - Rules analogous to real chemistry, but simple
 - Joining: According to valence rules. Maximize total bond energy. Atoms cannot overlap
 - Split: Break bonds with least total energy
- Opportunities for novelty and exploration

Attractor Based Evolution

Views

SimSoup **Preliminary Results**

Molecules Constructed By SimSoup

Conclusion

Attractor Based Evolution

Objectives and Outline

Introduction

Origin Of Life Issues

Metabolic And Genetic Views

Conceptual Background Hypothesis

Chemistry: A

Network View

Network Elements

Chemical Networks Catalysis

Network Memory And

Mathematical Networks Static And Dynamic

Conclusion

Conclusions and a Question

- Artificial chemical networks with appropriate network connectivity can support an unlimited number of stable attractor states
- Such states in artificial networks could form the basis of an inheritance mechanism to support evolution^a
- It is unknown how many attractor states can be supported by real chemical networks
- SimSoup forms a platform for simulating open-ended exploration of chemical networks in which
- ... chemical network structure is determined by molecular structure
- Can a set of real molecular species that supports attractor based evolution be identified?

^aIndividuation and a means of reproduction would also be required

Exploration Chemistry

Attractor Based Evolution

Four State Polymer

SimSoup

Conclusion

Questions

Attractor Based Evolution

Objectives and Outline

Introduction Origin Of Life Issues Metabolic And Genetic Views Conceptual Background Hypothesis

Chemistry: A Network View

- Network Elements Mathematical Networks Static And Dynamic Chemical Networks Catalysis
- Network Memory And Exploration Four State Polymer Chemistry
- Attractor Based Evolution
- SimSoup
- Conclusion

Questions?